Part Number Hot Search : 
0240A AD71206 PCC81 N4757A PA140 F3330 KEM5001R KEM5001R
Product Description
Full Text Search
 

To Download NCV500 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ? semiconductor components industries, llc, 2013 may , 2013 ? rev . 21 1 publication order number: ncp500/d ncp500, NCV500 150 ma cmos low noise low-dr opout v oltage regulator t h e ncp500 series of fixed output low dropout linear regulators are designed for portable battery powered applications which require low noise operation, fast enable response time, and low dropout. the device achieves its low noise performance without the need of an external noise bypass capacitor . each device contains a voltage reference unit, an error amplifier , a pmos power transistor , and resistors for setting output voltage, and current limit and temperature limit protection circuits. the ncp500 has been designed to be used with low cost ceramic capacitors and requires a minimum output capacitor of 1.0  f. features ? ultra ? low dropout v oltage of 170 mv at 150 ma ? fast enable t u r n ? o n t ime of 20  sec ? w ide operating v oltage range of 1.8 v to 6.0 v ? excellent line and load regulation ? high accuracy output v oltage of 2.5% ? enable can be driven directly by 1.0 v logic ? t ypical rms noise v oltage 50  v with no bypass capacitor (bw = 10 hz to 100 khz) ? v ery small dfn 2x2.2 package ? ncv prefix for automotive and other applications requiring unique site and control change requirements; aec ? q100 qualified and pp ap capable ? these are pb ? free devices t ypical applications ? noise sensitive circuits ? vco? s, rf stages, etc. ? smps post ? regulation ? hand ? held instrumentation ? camcorders and cameras driver w/ current limit v in v out thermal shutdown enable gnd off on 1 (3) 3 (1) 5 (4) 2 (2, 5) figure 1. simplified block diagram note: pin numbers in parenthesis indicate dfn package. s e e detailed ordering and shipping information in the package dimensions section on page 16 of this data sheet. ordering informa tion tsop ? 5 sn suffix case 483 1 5 pin connections and marking diagrams 1 3 n/c v in 2 gnd enable 4 v out 5 xxx = specific device code a = assembly location y = y ear w = w ork w eek  = pb ? free package (note: microdot may be in either location) (t op v iew) tsop ? 5 dfn 2x2.2 mm sql suffix case 506ba 1 3 n/c v in 2 gnd enable 4 v out 5 6 gnd (t op v iew) http://onsemi.com xxm xxxa yw   dfn 2x2.2 mm xx = specific device code m = date code 1 6 http://
ncp500, NCV500 http://onsemi.com 2 pin function description tsop ? 5 pin no. dfn 2x2 pin no. pin name description 1 3 v in positive power supply input voltage. 2 2, 5 gnd power supply ground. 3 1 enable this input is used to place the device into low ? power standby. when this input is pulled to a logic low , the device is disabled. if this function is not used, enable should be connected to v in . 4 6 n/c no internal connection. 5 4 v out regulated output voltage. maximum ra tings rating symbol value unit input voltage v in 0 to 6.0 v enable voltage v on/off ? 0.3 to v in +0.3 v output voltage v out ? 0.3 to v in +0.3 v output short circuit duration ? infinite ? thermal resistance, junction ? to ? ambient tsop ? 5 dfn (note 3) r  ja 250 225 ? c/w operating junction temperature t j +125 ? c storage temperature t stg ? 65 to +150 ? c stresses exceeding maximum ratings may damage the device. maximum ratings are stress ratings only . functional operation above t he recommended operating conditions is not implied. extended exposure to stresses above the recommended operating conditions may af fect device reliability . 1. this device series contains esd protection and exceeds the following tests: human body model 2000 v per mil ? std ? 883, method 3015 machine model method 200 v latch up capability (85 ? c)  100 ma. 2. device is internally limited to 160 ? c by thermal shutdown. 3. for more information, refer to application note, and8080/d. electrical characteristics (v in = 2.35 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 1.8 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 1.755 1.8 1.845 v line regulation (v in = 2.3 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v oltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 140 270 10 200 350 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 175 175 1.0 300 300  a enable input threshold voltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output t urns of f, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na
ncp500, NCV500 http://onsemi.com 3 electrical characteristics (continued) (v in = 2.35 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s characteristic symbol min ty p max unit ? 1.85 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 1.804 1.85 1.896 v line regulation (v in = 2.3 v to 6.0 v, i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v oltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 ? ? 10 ? ? mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 175 175 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output turns off, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s electrical characteristics (v in = 3.0 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 2.5 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 2.438 2.5 2.563 v line regulation (v in = 3.0 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 100 190 10 170 270 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 180 180 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output t urns of f, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s
ncp500, NCV500 http://onsemi.com 4 electrical characteristics (v in = 3.1 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 2.6 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 2.535 2.6 2.665 v line regulation (v in = 3.0 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 ? ? 10 ? ? mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 180 180 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output turns off, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s electrical characteristics (v in = 3.2 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 2.7 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 2.633 2.7 2.768 v line regulation (v in = 3.2 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 90 180 10 160 260 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 185 185 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output t urns of f, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s
ncp500, NCV500 http://onsemi.com 5 electrical characteristics (v in = 3.3 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 2.8 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 2.730 2.8 2.870 v line regulation (v in = 3.3 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 90 170 10 150 250 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 185 185 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output turns off, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s electrical characteristics (v in = 3.5 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 3.0 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 2.925 3.0 3.075 v line regulation (v in = 3.5 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 85 165 10 130 240 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 190 190 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output t urns of f, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s
ncp500, NCV500 http://onsemi.com 6 electrical characteristics (v in = 3.8 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 3.3 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 3.218 3.3 3.383 v line regulation (v in = 3.8 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 80 150 10 11 0 230 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 195 195 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output turns off, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s electrical characteristics (v in = 5.5 v , c in = 1.0  f, c out = 1.0  f , for typical value t a = 25 ? c, for min and max values t a = ? 40 ? c to 85 ? c, t jmax = 125 ? c, unless otherwise noted) characteristic symbol min ty p max unit ? 5.0 v output v oltage (t a = ? 40 ? c to 85 ? c, i out = 1.0 ma to 150 ma) v out 4.875 5.0 5.125 v line regulation (v in = 5.5 v to 6.0 v , i out = 1.0 ma) reg line ? 1.0 10 mv load regulation (i out = 1.0 ma to 150 ma) reg load ? 15 45 mv dropout v o ltage (measured at v out ? 2.0%, t a = ? 40 ? c to 85 ? c) (iout = 1.0 ma) (iout = 75 ma) (iout = 150 ma) v in ? v out ? ? ? 2.0 60 120 10 100 180 mv output short circuit current i out(max ) 200 540 700 ma ripple rejection (v in = v out (nom.) + 1.0 v + 0.5 v pp , f = 1.0 khz, i o = 60 ma) rr ? 62 ? db quiescent current (enable input = 0 v) (enable input = 0.9 v , i out = 1.0 ma) (enable input = 0.9 v , i out = 150 ma) i q ? ? ? 0.01 210 210 1.0 300 300  a enable input threshold v oltage (v oltage increasing, output t urns on, logic high) (v oltage decreasing, output t urns of f, logic low) v th(en) 0.9 ? ? ? ? 0.15 v enable input bias current i ib(en) ? 3.0 100 na output t urn on t ime (enable input = 0 v to v in ) ? ? 20 100  s 4. maximum package power dissipation limits must be observed. pd  t j(max)  t a r  ja 5. low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
ncp500, NCV500 http://onsemi.com 7 230 190 250 170 210 150 270 290 310 330 350 160 ? 50 30 60 50 20 50 75 25 0 100 t emperature ( ? c) v in ? v out, dropout v o ltage (mv) 10 40 0 ? 25 t emperature ( ? c) figure 2. dropout v oltage vs. t emperature figure 3. dropout v oltage vs. t emperature v in ? v out, dropout v o ltage (mv) ? 50 80 70 60 50 50 25 0 40 30 20 10 0 ? 25 75 100 125 figure 4. dropout v oltage vs. t emperature t emperature ( ? c) figure 5. dropout v oltage vs. t emperature t emperature ( ? c) v in ? v out, dropout v oltage (mv) v in ? v out, dropout v oltage (mv) figure 6. dropout v oltage vs. t emperature t emperature ( ? c) figure 7. dropout v oltage vs. t emperature t emperature ( ? c) v in ? v out, dropout v oltage (mv) v in ? v out, dropout v oltage (mv) v out(nom.) = 3.3 v 70 125 ? 50 120 100 60 80 50 25 0 40 20 0 ? 25 75 100 125 ? 50 50 75 25 0 100 ? 25 125 160 120 180 100 140 80 200 ? 50 50 75 25 0 100 ? 25 125 120 180 100 140 80 200 220 ? 50 50 75 25 0 100 ? 25 125 v out(nom.) = 2.8 v v out(nom.) = 1.8 v v out(nom.) = 3.3 v v out(nom.) = 2.8 v v out(nom.) = 1.8 v 50 ma load 10 ma load 1.0 ma load 150 ma load 120 ma load 100 ma load 150 ma load 120 ma load 100 ma load 150 ma load 120 ma load 100 ma load 50 ma load 10 ma load 1.0 ma load 50 ma load 10 ma load 1.0 ma load
ncp500, NCV500 http://onsemi.com 8 25 2.804 2.802 2.8 2.798 2.796 2.794 2.792 2.790 1.804 1.8035 1.803 1.8025 1.802 1.8015 1.801 1.8005 225 200 175 150 125 100 75 50 0 25 210 200 190 180 170 160 150 ? 50 3.308 3.306 50 3.304 3.302 75 25 0 100 t emperature ( ? c) v out, output v oltage (v) 3.300 3.298 3.296 3.294 3.292 ? 25 t emperature ( ? c) figure 8. output v oltage vs. t emperature figure 9. output v oltage vs. t emperature v out, output v oltage (v) figure 10. output v oltage vs. t emperature t emperature ( ? c) figure 1 1. quiescent current vs. t emperature t emperature ( ? c) i q, quiescent current (  a) v out, output v oltage (v) figure 12. quiescent current vs. input v oltage input v oltage (v) figure 13. quiescent current vs. input v oltage input v oltage (v) i q, quiescent current (  a) i q, quiescent current (  a) v out(nom.) = 1.8 v i out = 0 ma t a = 25 ? c 125 ? 50 50 75 25 0 100 ? 25 12 5 ? 50 50 75 25 0 100 ? 25 125 ? 50 50 75 25 0 100 ? 25 125 0 225 200 4.0 175 150 5.0 3.0 2.0 6.0 125 100 75 50 1.0 0 v out(nom.) = 3.3 v i out = 0 ma t a = 25 ? c v in = v out(nom.) +0.5 v v out(nom.) = 3.3 v i o = 1.0 ma 0 4.0 5.0 3.0 2.0 6.0 1.0 v in = v out(nom.) = + 0.5 v i o = 0 ma v out(nom.) = 3.3 v v out(nom.) = 1.8 v v in = v out(nom.) + 0.5 v v out(nom.) = 2.8 v i o = 1.0 ma v in = v out(nom.) + 0.5 v v out(nom.) = 1.8 v i o = 1.0 ma
ncp500, NCV500 http://onsemi.com 9 150 125 100 75 50 25 0 175 200 225 40 20 0 60 80 100 600 400 200 0 800 1000 400 300 200 100 0 500 600 150 125 100 75 50 25 0 175 200 225 input v oltage (v) ground pin current (  a) input v oltage (v) figure 14. ground pin current vs. input v oltage figure 15. ground pin current vs. input v oltage ground pin current (  a) figure 16. current limit vs. input v oltage input v oltage (v) figure 17. ripple rejection vs. frequency f, frequency (khz) rr, ripple rejection (db) current limit (ma) 10 ma figure 18. output noise density f, frequency (khz) figure 19. line t ransient response t ime (  s) v out, output v oltage noise (nv/  hz ) v out(nom.) = 1.8 v i out = 50 ma t a = 25 ? c 0 4.0 5.0 3.0 2.0 6.0 1.0 0 4.0 5.0 3.0 2.0 6.0 1.0 0 4.0 5.0 3.0 2.0 6.0 1.0 100 10 0.1 1.0 0.01 100 1000 10 1.0 0.1 100 0 ? 50 60 40 02 0 150 3.0 5.0 100 80 120 140 160 4.0 200 50 v out = 1.8 v v in = 2.8 v i out = 1 ma c out = 1  f v out(nom.) = 3.3 v i out = 50 ma t a = 25 ? c 60 ma 10 ma v out = 1.8 v v in = 2.8 v dc + 0.5 v p ? p c out = 1  f output voltage deviation (mv) v in, input voltage (v) v in = 3.8 v to 4.8 v v out = 3.3 v c out = 1.0  f i out = 1.0 ma v out(nom.) = 3.3 v
ncp500, NCV500 http://onsemi.com 10 75 0 200 100 0 150 225 ? 100 ? 200 ? 300 3.0 200 150 100 50 4.0 5.0 0 ? 50 75 0 50 25 150 225 0 ? 25 ? 50 t ime (  s) t ime (  s) figure 20. line t ransient response figure 21. load t ransient response figure 22. load transient response t ime (  s) figure 23. t urn ? off response t ime (ms) 0 80 100 60 40 120 20 140 160 0 40 50 30 20 60 10 04 0 5 0 30 20 60 10 70 80 90 1.0 0 4.0 3.0 04 0 20 60 2.0 3.0 2.0 1.0 0 120 80 100 output v oltage (v) enable v oltage (v) output v oltage deviation (mv) i out, output current (ma) output v oltage deviation (mv) v in, input v oltage (v) output v oltage deviation (mv) i out, output current (ma) c out = 1.0  f c out = 10  f v in = 3.8 v to 4.8 v v out = 3.3 v c out = 1.0  f i out = 10 ma v in = 3.8 v v out = 3.3 v c out = 1.0  f c in = 1  f v in = 3.8 v v out = 3.3 v c out = 10  f c in = 1  f v in = 3.8 v v out = 3.3 v t a = 25 ? c r l = 3.3 k  c in = 1  f
ncp500, NCV500 http://onsemi.com 11 2 1 2.5 0.5 1.5 0 3 0 1.2 1.8 4 1 1.6 5 3 26 v in, input v oltage (v) v out, output v oltage (v) 0.8 1.4 0.6 1 v in, input v oltage (v) v out, output v oltage (v) 0 3.5 3 2.5 2 4 3 2 1.5 1 0.5 0 15 6 7 v in, input v oltage (v) v out, output v oltage (v) c in = 1  f c out = 1  f t a = 25 ? c v enable = v in 2 04 5 3 26 1 0.4 0.2 0 c in = 1  f c out = 1  f t a = 25 ? c v enable = v in c in = 1  f c out = 1  f t a = 25 ? c v enable = v in figure 24. output v oltage vs. input v oltage figure 25. output v oltage vs. input v oltage figure 26. output voltage vs. input voltage
ncp500, NCV500 http://onsemi.com 12 definitions load regulation the change in output voltage for a change in output load current at a constant temperature. dropout v oltage the input/output dif f erential at which t h e regulator output no longer maintains regulation against further reductions in input v o ltage. m easured w h en t h e o u tput d r ops 2 % b e low i t s nominal. the junction temperature, load current, and minimum i nput s upply r e quirements a f fect t h e d r opout l e vel. output noise v oltage this is the integrated value of the output noise over a specified frequency range. input voltage and output load current are kept constant during the measurement. results are expressed in  vrms or nv hz  . quiescent current t h e current which flows through the ground pin when the regulator operates without a load on its output: internal ic operation, bias, etc. when the ldo becomes loaded, this term i s called the ground current. it is actually the dif ference between the input current (measured through the ldo input pin) and the output current. line regulation t h e change in output voltage for a change in input voltage. the measurement is made under conditions of low dissipation o r b y using pulse technique such that the average chip temperature is not significantly af fected. line t ransient response t ypical over and undershoot response when input voltage is excited with a given slope. thermal protection internal thermal shutdown circuitry is provided to protect t h e integrated circuit in the event that the maximum junction temperature i s exceeded. when activated at typically 160 ? c, the regulator turns of f. this feature is provided to prevent failures from accidental overheating. maximum package power dissipation the power dissipation level at which the junction temperature reaches its maximum operating value, i.e. 125 ? c. applica tions informa tion the ncp500 series regulators are protected with internal thermal shutdown and internal current limit. a typical application circuit is shown in figure 27. input decoupling (c1) a 1.0  f capacitor either ceramic or tantalum is recommended and should be connected close to the ncp500 package. higher values and lower esr will improve the overall line transient response. output decoupling (c2) the ncp500 is a stable component and does not require a minimum equivalent series resistance (esr) or a minimum output current. the minimum decoupling value is 1.0  f and can be augmented to fulfill stringent load transient requirements. the regulator accepts ceramic chip capacitors as well as tantalum devices. lar ger values improve noise rejection and load regulation transient response. figure 2 9 shows the stability region for a range of operating conditions and esr values. noise decoupling the ncp500 is a low noise regulator without the need of an e x ternal b ypass c a pacitor . i t t ypically r eaches a n o ise l e vel of 5 0  vrms o v erall n o ise b e tween 1 0 h z a n d 1 0 0 k hz. t h e classical bypass capacitor impacts the start up phase of standard ldos. however , thanks to its low noise architecture, t h e n c p500 o p erates w ithout a b ypass e l ement and thus of fers a typical 20  s start up phase. enable operation the enable pin will turn on or of f the regulator . these limits of threshold are covered in the electrical specification section of this data sheet. the turn ? on/turn ? of f transient voltage being supplied to the enable pin should exceed a slew rate of 10 mv/  s to ensure correct operation. if the enable is not to be used then the pin should be connected to v in . thermal as power across the ncp500 increases, it might become necessary to provide some thermal relief. the maximum power dissipation supported by the device is dependent upon board design and layout. mounting pad configuration o n the pcb, the board material, and the ambient temperature ef fect the rate of junction temperature rise for the part. this is stating that when the ncp500 has good thermal conductivity through the pcb, the junction temperature will be relatively low with high power dissipation applications.
ncp500, NCV500 http://onsemi.com 13 the maximum dissipation the package can handle is given by: pd  t j(m a x)  t a r  ja if t j is not recommended to exceed 125 ? c, then the ncp500 can dissipate up to 400 mw @ 25 ? c. the power dissipated by the ncp500 can be calculated from the following equation: p tot   v in *i gnd (i out )  [ v in  v ou t ] *i out or v inmax  p tot v out * i out i gnd i out if a 150 ma output current is needed the ground current i s extracted from the data sheet curves: 200  a @ 150 ma. f o r a ncp500sn18t1 (1.8 v), the maximum input voltage will then be 4.4 v , good for a 1 cell li ? ion battery . hints please b e sure the v in and gnd lines are suf ficiently wide. when the impedance of these lines is high, there is a chance to pick up noise or cause the regulator to malfunction. set external components, especially the output capacitor , as close as possible to the circuit, and make leads as short as possible. package placement dfn packages can be placed using standard pick and place equipment with an accuracy of  0.05 mm. component pick and place systems are composed of a vision system that recognizes and positions the component and a mechanical system which physically performs the pick and place operation. t wo commonly used types of vision systems are: (1) a vision system that locates a package silhouette and (2) a vision system that locates individual bumps on the interconnect pattern. the latter type renders more accurate place but tends to be more expensive and time consuming. both methods are acceptable since the parts align due to a self ? centering feature of the dfn solder joint during solder re ? flow . solder paste t ype 3 or t ype 4 solder paste is acceptable. re ? flow and cleaning the dfn may be assembled using standard ir/ir convection smt re ? flow processes without any special considerations. as with other packages, the thermal profile for specific board locations must be determined. nitrogen pur ge is recommended during solder for no ? clean fluxes. t h e dfn is qualified for up to three re ? flow cycles at 235 ? c peak ( j ? std ? 020). the actual temperature of the dfn is a function of: ? component density ? component location on the board ? size of surrounding components figure 27. t ypical application circuit v out battery or unregulated voltage c1 c2 off on 1 2 3 5 4 + + figure 28. typical application circuit v out battery or unregulated voltage + c1 off on 1 3 2 4 5 6 + c2
ncp500, NCV500 http://onsemi.com 14 output r 1 2 3 5 4 input 1.0  f 1.0  f output 1 2 3 5 4 input 1.0  f 1.0  f q2 q1 r3 r1 r2 t h e ncp500 series can be current boosted with a pnp transist- or . resistor r in conjunction with v be of the pnp determines when the pass transistor begins conducting; this circuit is not short circuit proof. input/output dif ferential voltage minimum is increased by v be of the pass resistor . short circuit current limit is essentially set by the v be of q2 and r1. i sc = ((v beq 2 ? ib * r2) / r1) + i o(m ax ) regulator q1 0 10 1 75 50 25 0.1 0.01 100 125 150 i o, output current (ma) output capacitor esr (  ) c out = 1  f to 10  f t a = 40 ? c to 125 ? c v in = up to 6.0 v unstable st able figure 29. stability figure 30. current boost regulator figure 31. current boost regulator with short circuit limit
ncp500, NCV500 http://onsemi.com 15 output 1 2 3 5 4 input 1.0  f 1.0  f q1 r 5.6 v a regulated output can be achieved with input voltages that ex- ceed the 6.0 v maximum rating of the ncp500 series with the addition of a simple pre ? regulator circuit. care must be taken to prevent q1 from overheating when the regulated output (v out ) is shorted to g nd. output 1 2 3 5 4 input 1.0  f 1.0  f output 1 2 3 5 4 enable 1.0  f 1.0  f c 0 3 3 80 2.5 2 90 40 30 1 10 t ime (ms) v out, output v oltage (v) 2 1 1.5 20 4 1 0.5 0 100 70 60 50 10 0 enable v oltage (v) t a = 25 ? c v in = 3.4 v v out = 2.8 v r = 1.0 m  c = 1.0  f r = 1.0 m  c = 0.1  f no delay if a delayed turn ? on is needed during power up of several voltages then the above schematic can be used. resistor r, a n d capacitor c, will delay the turn ? on of the bottom regulator . a few values were chosen and the resulting delay can be seen in figure 33. t h e graph shows the delay between the enable signal and output turn ? on for various resistor and capacitor values. r figure 32. delayed t urn ? on figure 33. delayed t urn ? on figure 34. input v oltages greater than 6.0 v
ncp500, NCV500 http://onsemi.com 16 ordering informa tion device nominal output voltage marking package shipping ? ncp500sn18t1g 1.8 lcs tsop ? 5 (pb ? free) 3000 units/ 7 ? tape & reel ncp500sn185t1g 1.85 lfl ncp500sn25t1g 2.5 lct ncp500sn26t1g 2.6 lfm ncp500sn27t1g 2.7 lcu ncp500sn28t1g 2.8 lcv ncp500sn30t1g 3.0 lcw ncp500sn33t1g 3.3 lcx ncp500sn50t1g 5.0 lcy NCV500sn185t1g* 1.85 lfl NCV500sn18t1g* 1.8 lcs NCV500sn28t1g* 2.8 lcv NCV500sn33t1g* 3.3 lcx ncp500sql18t1g 1.8 ld dfn6 2x2.2 (pb ? free) 3000 units/ 7 ? tape & reel ncp500sql25t1g 2.5 le ncp500sql27t1g 2.7 lf ncp500sql28t1g 2.8 lg ncp500sql30t1g 3.0 lh ncp500sql33t1g 3.3 lj ncp500sql50t1g 5.0 lk for availability of other output voltages, please contact your local on semiconductor sales representative. ? for information on tape and reel specifications, including part orientation and tape sizes, please refer to our t ape and reel packaging specifications brochure, brd801 1/d. *ncv prefix for automotive and other applications requiring unique site and control change requirements; aec ? q100 qualified and ppap capable.
ncp500, NCV500 http://onsemi.com 17 p ackage dimensions tsop ? 5 sn suffix case 483 ? 02 issue k notes: 1. dimensioning and t olerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. maximum lead thickness includes lead finish thickness. minimum lead thickness is the minimum thickness of base ma terial. 4. dimensions a and b do not include mold flash, protrusions, or ga te burrs. mold flash, protrusions, or ga te burrs shall not exceed 0.15 per side. dimension a. 5. optional construction: an additional trimmed lead is allowed in this loca tion. trimmed lead not to extend more than 0.2 from body. dim min max millimeters a 3.00 bsc b 1.50 bsc c 0.90 1.10 d 0.25 0.50 g 0.95 bsc h 0.01 0.10 j 0.10 0.26 k 0.20 0.60 m 0 10 s 2.50 3.00 123 54 s a g b d h c j  0.7 0.028 1.0 0.039
mm inches scale 10:1 0.95 0.037 2.4 0.094 1.9 0.074 *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting techniques reference manual, solderrm/d. soldering footprint* 0.20 5x c ab t 0.10 2x 2x t 0.20 note 5 c seating plane 0.05 k m detail z detail z t o p view side view a b end view
ncp500, NCV500 http://onsemi.com 18 p ackage dimensions dfn6, 2x2.2, 0.65p sql suffix case 506ba issue a notes: 1. dimensioning and t olerancing per asme y14.5m, 1994. 2. controlling dimension: millimeters. 3. dimension b applies t o pla ted terminal and is measured between 0.15 and 0.20 mm from terminal. 4. coplanarity applies t o the exposed p ad as well as the terminals. a b e d d2 e2 bott om view b e 6x 0.10 b 0.05 a c c k 6x note 3 2x 0.10 c pin one reference t op view 2x 0.10 c 7x a a1 0.08 c 0.10 c c sea ting plane side view l 6x 1 3 4 6 dim min max millimeters a 0.80 1.00 a1 0.00 0.05 b 0.20 0.30 d 2.00 bsc d2 1.10 1.30 e 2.20 bsc e2 0.70 0.90 e 0.65 bsc k 0.20 ??? l 0.25 0.35 l1 0.00 0.10 l1 6x 0.58 1.36 0.96 1 0.35 0.65 pitch 2.50 6x dimensions: millimeters *for additional information on our pb ? free strategy and soldering details, please download the on semiconductor soldering and mounting t echniques reference manual, solderrm/d. soldering footprint* l1 det ail a l al terna te terminal constructions ?? ?? a1 a3 l det ail b mold cmpd exposed cu al terna te constructions det ail b detail a p ackage outline o n semi conduct o r and are regist ered trademarks of semiconduct o r co mponent s indust r ies, llc (sci llc). sci llc owns the right s to a numb er of pat ent s, trademarks, copyright s, trade secret s, and ot her int e llect ual propert y . a list ing of sci llc? s product / pat ent coverage may be accessed at ww w . onsemi. com/ sit e/ pdf / p at ent ? marking. pdf . sci llc reserves t h e r i ght t o m a ke c hanges w i t hout f u rt her n o t i ce t o a n y p r oduct s h e rein. s c i llc m a kes n o w a rrant y , r epresent at ion o r g uarant ee r egarding t h e s u it abilit y o f i t s p r oduct s f o r a n y par t i cular pur pose, nor does sci llc assume any liabilit y ar ising out of the applicat ion or use of any pr oduct or cir c uit , and s pecif ically disclaims any and all liabilit y , including wit hout limit at ion s pecial, c onsequent ial o r i n cident al d a mages. ? t ypical? p a ramet e rs w h ich m a y b e p r ovided i n s c i llc d a t a s heet s a nd/ or s pecif icat ions c a n a n d d o v a ry i n d i f f erent a pplicat ions and act ual perf ormance may vary over time. all operat ing parame ters, including ?t ypicals? must be validat ed for each cust omer applicat ion by cust omer ? s technical expert s . sci llc does n o t c onvey a n y l i cense under i t s p a t ent r i ght s n o r t h e r i ght s o f o t hers. s c i llc p r oduct s a r e n o t d e signed, i n t ended, o r a ut horized f o r u s e as c o mponent s in s yst ems int ended f o r surgical i m plant i n t o t h e b ody , o r o t her a pplicat ions i n t ended t o s upport o r s u st ain l i f e , o r f o r a n y o t her a pplicat ion i n w h ic h t h e f a ilure o f t h e s c i llc p r oduct c ould c r eat e a s i t uat ion w here personal i n jury o r d eat h m a y o ccur . s hould b u yer p u rchase o r u s e s c i llc p r oduct s f o r a n y s u ch u n int ended o r u naut horized appli cat i on, b u yer s hall i ndemnif y a n d h o ld sci llc a n d it s o f f i cer s , e m ployees, s ubsidiar i es, a f f iliat e s, a n d d i st r i but or s h a r m less a gainst a l l c l aims, c o st s, d a mages, a n d e x penses, a n d r easonable a t t o rney f ees a r ising o u t o f , d i rect ly o r i ndirect ly , any c l aim o f p e rsonal injury o r d eat h associat ed wit h s u ch unin t ended or u naut horized use, e v en if s u ch c l aim a lleges t hat s c i l lc was negligent r egarding the design or m anuf act u re of t h e part . sci llc is an equal opport unit y / a f f irmat i ve act i on employer . this lit e rat u re is subject t o all applicable copyrig ht laws and is not f o r resale in any manner . publica tion ordering informa tion n. american t echnical support : 800 ? 282 ? 9855 t oll free usa/canada europe, middle east and africa t echnical support: phone: 421 33 790 2910 japan customer focus center phone: 81 ? 3 ? 5817 ? 1050 ncp500/d litera ture fulfillment : literature distribution center for on semiconductor p .o. box 5163, denver , colorado 80217 usa phone : 303 ? 675 ? 2175 or 800 ? 344 ? 3860 t oll free usa/canada fax : 303 ? 675 ? 2176 or 800 ? 344 ? 3867 t oll free usa/canada email : orderlit@onsemi.com on semiconductor w ebsite : www .onsemi.com order literature : http://www .onsemi.com/orderlit for additional information, please contact your local sales representative


▲Up To Search▲   

 
Price & Availability of NCV500

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X